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distribution function g(A), which might, for example, be 
Gaussian when 

g(A) = (n~t2) -1/2 exp ( -  -42/Ot2). 

As N tends to infinity all possible configurations will be 
assumed during the aggregation process. The general 
term in the series of (10) is 

Gn(q) exp (_q2 p2) cos (qnd), 

which approximates to 

exp {_qE[(ntt2/4) + p2]} cos (qnd) 

if g(A) is Gaussian. Note that d is only defined for dis- 
order of the second kind (as in § 5) if 

( Z , )  = 0. 

This condition is essentially a description of a disor- 
dered model of the kind we are investigating, i.e. one in 
which all possible 'atomic'  configurations are assumed. 
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Abstract  

The electron-density distribution in crystalline silicon 
was refined with a three-parameter density model which 
was originally designed by Brill. The same data sets 

0567-7394/80/020205-06501.00 

were used as by other authors [Price, Maslen & Mair 
(PMM) (1978). Acta Cryst. A34, 183-193; Hansen 
& Coppens (1978). Acta Cryst. A34, 909-921] in re- 
fining their multipole models. The data sets are (1) the  
15 Mo K~ room-temperature data of Aldred & Hart 
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206 THE ELECTRON-DENSITY DISTRIBUTION IN SILICON 

(AH) [Proc. R. Soc. London Ser. A (1973), 322, 223- 
238, 239-254], (2) the 15 AH data plus the 222 and 442 
data of Roberto & Batterman [Phys. Rev. B (1970), 2, 
3220-3226] and Trucano & Batterman [Phys. Rev. B 
(1972), 6, 3659-3666], respectively, (3) the 17 data of 
(2) plus four data measured by Hattori, Kuriyama, 
Katagawa & Kato (HKKK) [J. Phys. Soc. Jpn (1965), 
20, 988-996]. R for these data sets, obtained with the 
present density model, is 0.12, 0.13 and 0.30%, respec- 
tively. This compares well with the values obtained by 
the other authors with their multipole models. In the 
deformation density, PMM found a Si-Si bond peak of 
height 0.13 e A -3 with data set (1), whereas Yang & 
Coppens [Solid State Commun. (1974), 15, 1555- 
1559] found a peak height of 0.29 e A -3 with data set 
(3). With data set (2) a peak height of 0.20 e A -3 is 
found in agreement with the result of PMM. However, 
the increase of the peak height to 0.29 e A -3 with data 
set (3) is an inaccuracy which arises from the fact that 
the four HKKK reflections were not measured ac- 
curately enough. 

Introduction 

The electron-density distribution in crystalline silicon 
has been studied extensively, mainly by G6ttlicher & 
W61fel (1959); De Marco & Weiss (1965); Hattori, 
Kuriyama, Katagawa & Kato (1965, hereafter referred 
to as HKKK); Dawson (1967, 1975); McConnell & 
Sanger (1970); Aldred & Hart (1973, hereafter referred 
to as AH); Yang & Coppens (1974, hereafter referred 
to as YC); Hansen & Coppens (1978, hereafter 
referred to as HC); Price, Maslen & Mair (1978, here- 
after referred to as PMM). Two X-ray data sets were 
obtained by Pendelldsung-fringe measurements on 
perfect crystals, one by HKKK, the other by AH. 
AH's data represent the most accurate X-ray data ever 
measured on a crystal. 

The high accuracy of AH's data led us to examine a 
density model which was originally proposed by Brill 
(1959, 1960) in his investigation of diamond~ and 
which we have applied in a somewhat refined form to 
decaborane and cyanuric acid (Dietrich & Scheringer, 
1978, 1979). An examination of this type of model is 
particularly interesting in view of the refinements that 
have been performed with multipole density models by 
PMM and HC; also with AH's data. The density model 
according to Brill consists of atomic cores and 
Gaussian-distributed charge clouds which are placed in 
the centre of the bonds. Thus, this model allows an 
expedient description of the accumulation of charge in 
covalent bonds. HKKK also used this model for the 
interpretation of their X-ray data on silicon, but the 
quality of their data did not appear to be sufficient to 
examine the usefulness of the model as such. 

A factual problem arises through the study of the 
deformation densities for silicon which have been 

published. With the 15 data of AH, PMM found a bond 
peak of height 0.13 e A -3, whereas YC, with the in- 
clusion of the 222 reflection (Roberto & Batterman, 
1970) and the 442 reflection (Trucano & Batterman, 
1972) and four reflections of HKKK, found a peak of 
height 0.29 e A -3. We recalculated the maps* (PMM's 
map with the Fo's instead of the Fc'S) and, moreover, 
calculated a map with the 15 data of AH and the 222, 
442 reflections, and found a peak height of 0.20 e A -3 
(Fig. 1). The 222 reflection strongly contributes to the 
bond density (0.07 e A-3), the very weak 442 reflec- 
tion hardly at all. Thus, the difference of 0.09 e A -3 to 
the result of YC (0.29 e A -3) has to be attributed to the 
four HKKK reflections in the Fourier map. Here the 
question arises why these four reflections have such a 
large effect on the bond density. Two explanations 
suggest themselves: series termination error or errors in 
the measured intensities. The study of this problem is 
the second purpose of this paper. 

Firstly, we describe the treatment of the data, discuss 
the parameters and the structure factor for our density 
model and present the results of the refinement. Then 
we shall compare R values and goodness-of-fit values 
of our model with those reported in the literature. 
Finally, we shall investigate the discrepancy found in 
the deformation densities. 

Refinement of the density model 

The observed structure factors are the 15 Mo Ka room- 
temperature data from AH's Table 3, plus six data 

*The Fourier syntheses were computed with the program 
written by Finger & Prince (1975). 
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Fig. 1. Deformation density along the Si-Si bond (xxz section). 
The density was calculated with coefficients F o - Fc(free-atom 
model) from data set 17 of Table 1 and with signs of column 
Fc(bond). Contour interval: 0.025 e A -3. Positive density: full 
lines; zero density: dotted; negative density: dashed. 
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from other authors, Table 1. The data were corrected 
for anomalous absorption by the method of YC, with 
f '  = 0.1003 and f "  = 0.07117 (Wagenfeld, Kfihn & 
Guttman,  1973). The weights were calculated as w = 
1/a 2 with the a(F)  as given by YC. For the reflections 
111 and 442, however, a larger a(F) was used, a(F)  = 
0.020, to avoid the refinement being based mainly on 
these two reflections. 

The model for the density distribution consists of a 
spherically symmetric atomic core with a positive net 
charge q(Si), and negative Gaussian-distributed 
charges at the bond centres, q(bond). Neutrality in the 
crystal demands 

q(Si) + 2q(bond) = O. (1) 

The smearing tensor for the bond charges has only two 
independent components (site symmetry 3); we put V~ 
= V22 perpendicular to and V33 along the bond. Along 
the bond we assume that the bond charges vibrate like 
the Si cores, but perpendicular to the bond we assume 
smaller vibrations (Scheringer, 1977). With an assess- 
ment of Fujimoto (1974), we reduce the vibration com- 
ponents of the bond charges perpendicular to the bond 
by a factor of r / =  0.74. Thus our model contains only 
three density parameters,  q(Si), VI~ and V33, and an 
isotropic vibration parameter  B. With these para- 

Table 1. Observed and calculated structure factors  f o r  
Si per face-centred cell 

The observed structure factors are derived from the experimental 
structure factors listed by YC (Table 1), by applying the 
correction for anomalous dispersion for Pendell6sung fringe data 
( f '  = 0. 1003, f "  = 0.07117). F¢(bond) = F e calculated from the 
bonding model used in this work; Fe(FAM ) = F c calculated from 
the free-atom model with B = 0.4700. RB refers to Roberto & 
Batterman (1970), TB to Trucano & Batterman (1972). 

h k l Fo(a[Fo]) Fc(bond) Fc(FAM) Reference 

l 1 1 59.967 (4) -59 .994  -58 .900  AH 
2 2 0 67.070 (48) -67.141 -67 .542  AH 
3 1 1 43.421 (40) --43.392 --44.237 AH 
2 2 2 1.442 (40) 1.419 0.0 RB 
4 0 0 55.873 (80) -55 .828  -56 .399  AH 
3 3 I 38.008 (40) 38.026 37.701 AH 
4 2 2 48.935 (72) 48.890 48.774 AH 
3 3 3 32.677 (40) 32.785 32.744 AH 
5 1 1 32.721 (40) 32.731 32.744 AH 
4 4 0 42.592 (32) 42.625 42.551 AH 
5 3 1 28.912 (408)  28.654 28.628 HKKK 
4 4 2 0.034 (2) 0.025 0.0 TB 
6 2 0 37.005 (524)  37.307 37.321 HKKK 
5 3 3 24.921 (352) -25.126 -25-157 HKKK 
4 4 4 32.948 (40)  -32-872 -32.909 AH 
5 5 1 22.717 (324) -22.207 --22.227 HKKK 
6 4 2 29.216 (56 )  -29.139 -29.165 AH 
6 6 0 23-297 (56)  -23.254 -23.267 AH 
5 5 5 15.783 (40) 15.797 15.805 AH 
8 4 4 17.139 (48) 17.205 17.205 AH 
8 8 0 12.234 (64) 12.216 12.210 AH 

meters and Si located at ~ ~ g,~,g, the structure factor for 
the face-centered cell is given by 

F(hkl)  = 8f (S i )  cos [n(h + k + l)/4] 

× exp [--B(sin 2 0) 2 -2] + 4q(bond) 

× exp { - ( h  2 + k 2 + 12)/3a212n2(2Vll + V33 ) 
4 

+ B(1 + 2r/)/4]} Z cos [2n(hx i + kyj + lzi)l 
j= l  

× exp { - 2 ( h j k j  + hjlj + ki l j ) /3a 2 

× [2n2(V33- V,,) + B(1 - r/)/4]}, r /=  0.74. (2) 

The sum over j goes over the four symmetry-equiva- 
lent positions of the bond charges  (centres of the S i -S i  
bonds), hj, kj, lj may differ only in sign for the four 
values of j ;  the signs can be obtained from the 
symmetry transformations of the second-order tensors 
(Scheringer, 1979). 

The scattering factor f (S i )  is set up as the sum of the 
scattering factor for the Si 4+ core, f(Si4+), and the 
scattering factor for the valence shell, fva~. The latter is 
calculated as the difference f ( S i  °) - f ( S i 4 + ) ,  with one 
modification. The grid points for these two scattering 
curves are taken from International Tables f o r  X-ray 
Crystallography (1974), and for each reflection a linear 
interpolation in sin 0/2 is carried out. Concerning the 
detailed shape of the valence shell, we have taken over 
an idea from Coppens (1977); see also HC and 
Coppens et al. (1979). These authors found that the 
valence shell contracts with a positive net charge of the 
atom and expands with a negative net charge. To 
describe this change in shape, they introduced a con- 
traction/expansion parameter  K along with the popu- 
lation parameter.  In this work we apply only one para- 
meter, the net charge q(Si) (then the population is given 
by P = 4 - q), and use it to steer the contrac- 
tion/expansion of the valence shell. Here, we use a 
mathematical formalism which differs from that of 
Coppens (1977) and is simpler to apply in com- 
putation. We choose-an exponential factor offvaJ, and 
then write fo r f (S i )  in (2) 

f ( S i )  = f ( S i  4+) + (1 - q / 4 ) [ f ( S i ° ) - f ( S P + ) ]  

x exp [C~(q + C2)sin 0/2'], (3) 

where C~ and C2 are positive constants. The density 
distribution corresponding to (3) can be calculated 
analytically only for the case of the expansion, q + C 2 
< 0 .  Here it is the convolution of Pval with the inverse 
Fourier t ransform of the exponential factor. With 
(1/2)C~1q + C21 = a, this is known to be 8ha  [a 2 + 
(2nr)2] -2 (Hirshfeld, 1971). For  contraction of the 
valence shell (q + C 2 > 0), the inverse Fourier trans- 
form of the exponential factor does not exist, but we 
can show that the inverse Fourier transform of f ( S i )  
does. Here we have to show that f ( S i )  converges 
towards zero for sin 0/2, ~ ~ .  In this context we refer 
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to the fact that the scattering factors of the atoms and 
ions can be represented very well by a sum of Gaussian 
functions in sin 0/2 (International Tables for X-ray 
Crystallography, 1974). Hence, the scattering curves 
converge faster to zero than the exponential factor to 
infinity. Since we calculate the density distribution by a 
Fourier series, the lack of knowledge concerning the 
inverse Fourier transform of f (S i )  as given by (3) 
causes no harm. Numerical values for C 1 and C 2 are 
estimated from the results of Coppens et al. (1979) for 
the C and N atoms, and from the position and slope of 
the Slater line for these atoms. C~ = 0.3 and C2 = 0.1 
were guessed to be reasonable for Si and were used in 
the refinement. C~ = 0.2, 0.4 and C 2 = 0.1 gave nearly 
as good results; C~ = 0.6, C 2 = 0.1 and C1 = C 2 = 0 
led to significantly worse results. 

The final parameter values (e.s.d.'s in parentheses) 
are: B = 0.4700 (15) A2; q(Si) = 1.12 (12) positive- 
charge units; V~ = 0.256 (13), V33 : 0" 174 (14) A 2. 
From (1) we find q(bond) = 0.56 e, which is larger 
than the value of H K K K ,  0.45 e. On the other hand, 
H K K K ' s  (isotropic) smearing tensor is smaller, Vii = 
0.164 A 2, which matches the difference in q. Thus, 
according to our calculation, more charge is trans- 
ferred into the bond region and is more strongly 
smeared out. Moreover, the smearing is anisotropic, 
VI~ > II33, i.e. the charge is more strongly smeared out 
perpendicular to than along the bond. This result for 
silicon is in qualitative agreement with the inter- 
pretation by Brill (1960) of the (comparatively inacc- 
urate) experimental data for diamond, and with the 
theoretical calculation by Ewald & H6nl (1936a,b), 
also for diamond. 

Comparison of the refinements of various density 
models 

In order to demonstrate the appropriateness of our 
density model in matching the X-ray data, we present 
R and goodness-of-fit values for our and several other 
models in Table 2. These models are" the free-atom 
model, one model of the Dawson (1967) type from AH,  

four multipole models of PMM, and one multipole 
model of HC. In this comparison we have to refer 
respectively to the same groups of reflections which 
were used in the refinements. We denote the groups by 
the numbers of the reflections: 15 = M o K ~  room- 
temperature data of AH,  17 = 15 plus the 222, 442 
reflections, 21 = 17 plus the four H K K K  reflections of 
Table 1. The results are given in Table 2, and we 
conclude: 

(1) The improvement in fitting the data is signifi- 
cant for all bond-density models relative to the free- 
atom model (on the ~ = 0.005 level). 

(2) Our four-parameter model yields much better 
figures in Table 2 than the two five-parameter multi- 
pole models of PMM, and slightly better figures than 
the five-parameter multipole model of HC.* 

(3) The eight-parameter models of PMM give about 
equally good values for the goodness-of-fit as our 
model, but better R values. However, with the value of 
Hamilton (1965), .~  (4, 7, 0.005) = 2.60, the improve- 
ment in R is not significant on the ~ = 0.005 level. For 
the model P M M 3 a  it becomes significant for ~ = 
0.030, for the model PMM3b for ~ = 0.010. Thus, it 
could be that, with the eight-parameter multipole 
models of PMM, a physically better description is 
obtained, but this does not appear to be highly 
probable. 

Thus, we conclude that our model compares well 
with the multipole models of about the same number of 
parameters,  and gives an adequate description of the 
density distribution in the crystal, at least for the 
purpose of fitting the X-ray data. We believe that this 
type of model is also suited to representing the density 
distribution in molecular crystals. First results were 
reported for decaborane and cyanuric acid (Dietrich & 
Scheringer, 1978, 1979), but there a somewhat differ- 
ent and less effective description of the spherical atomic 
cores was used. 

*R for the three-parameter model of AH with data set 15 
(0.14%) appears to be abnormally low. Dawson (1975), in his 
review [Table 10, columnfmoo (3"4")1, does not confirm this value; 
according to Dawson it is >0.31%. 

Table 2. R (%) and goodness-of-fit values obtained in the refinements with various density models 

PMM1, PMM2, PMM3a, PMM3b denote the models used by PMM, Tables 1, 2, 3a, 3b, respectively. FAM denotes the free-atom model 
with B = 4700 A 2. The numbers in brackets denote the number of parameters used, where B is included. R = 100 ~ IAFI/VF o, 
GoF = [~ wlAFI2/(n _ p)]t/2. 

GoF 

Present 
Data FAM AH PMM l PMM2 PMM3a PMM3b HC work 
set (1) (3) (5) (5) (8) (8) (5) (4) 

15 0.67 0.14 0.53 0.28 0.05 0.06 0.14 0.12 
17 0.94 0.16 0.13 
21 0.98 0.34 0.30 

15 14.0 6.5 4.3 0.69 0-73 1.9 1.4 
17 15.9 1.9 1.3 
21 14.2 1.7 1.2 
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The bond peak in the deformation density 

We have already stated that, with the data sets 15 and 
21, bond peaks of very different heights (0.13 and 0.29 
e A -3, respectively) were obtained. In the following we 
shall show that the four HKKK reflections in the data 
set 21 cause an error in the peak height because they 
were not measured accurately enough. For these four 
reflections a ( F o )  is about one order larger [ a ( F o )  ,,. 

0.01F] than for the AH reflections [ a ( F o )  ~_ 0.001F]. 
From Table 1 we infer that the four HKKK Fo'S  

deviate more from the F~'s of both the bond model and 
the free-atom model than do the F~'s for these two 
models from each other. Hence, it is impossible to 
distinguish between the two models by means of the 
four HKKK reflections. This also becomes evident 
when we compare the F o - F c maps with the defor- 
mation densities. In the F o - Fc  map with data set 17 
(Fig. 2) we have an error level of 0.02 e/~-3, in the map 
with data set 21 (Fig. 3) an error level of 0.08 e A -3. In 

Fig. 2. Difference density calculated with coefficients F o - Fc(bond 
model) from data set 17. Between the zero lines, fluctuations 
smaller than 0.025 e/~-3 occur; these are indicated by numbers 
(x 100). Otherwise as Fig. 1. 
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Fig. 3. Difference density calculated with coefficients F o - Fc(bond 
model) from data set 2 I. Otherwise as Fig. 1. 

the deformation density with data set 17 (Fig. 1) we 
have a bond peak of 0.20 e A -3, with data set 21 a 
peak of 0.29 e A -3. Thus the error level for data set 21 
(0.08 A -3) is about as large as the increase of the peak 
height (0.09 e A-3). Similarly, R increases much more 
in the transition from data set 17 (0.13%) to data set 
21 (0.30%) than one would expect with the inclusion of 
only four additional data. The same trend is observed 
for the HC model, Table 2. The error in the HKKK 
intensities need not be of a systematic nature, since for 
three reflections I F  o - F c (bond model)l < a ( F o ) ;  only 
for the 551 reflection I A F I  > t r (Fo) .  This conclusion is 
also confirmed by a normal probability plot for data set 
21, see Fig. 4 [the points represent weighted pairs of 
F o, Fc(bonding model)]. The points for the four 
HKKK reflections are encircled. Only the 551 reflec- 
tion lies on the upper right corner of the plot; the 
other three H K K K  reflections fit into the central part 
well. Thus the plot for data set 21 is as good as that 
for data set 17 (which is not given here; it looks quite 
similar to the remainder of the plot for data set 21). 

To exclude the possibility that the bond peak for 
data set 17 is heavily reduced by series termination, we 
assume that our bond model describes the density 
distribution in the bond region essentially correctly, and 
then investigate the effect of possible series-termination 
errors with our model. Firstly, we calculate structure 
factors for data sets 17 and 21 from the models and the 
corresponding deformation densities p(bond model) - 
p(free-atom model). For both sets of structure factors 
the bond peak is 0-22 e A -3 high. Then we calculate an 
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Fig. 4. Normal probability plot I F  o ,  Fc(bonding model)l for data 
set 21. The four HKKK reflections are encircled. 
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additional 90 structure factors up to the limit of sin 
0/2 = 1.50 A -1 and the corresponding deformation 
density. Its bond peak is 0.24 e A -3 high. Hence, we 
can conclude that an increase of the bond peak from 
0.20 to 0-29 e /k  -3 is highly improbable by inclusion of 
a few accurately measured data (beyond the data set 
17) in the Fourier series. 

If we assume 0.20 e A -3 to be the nearly correct 
value for the peak height in the deformation density, 
then YC's valence density should also be reduced by 
about 0.09 e A -3 at the centre of the bond; i.e. instead 
of 0-69 e A -3 it will now be 0.60 e A -3. This reduction 
does not impair the general agreement with the theor- 
etical valence density of 0.65 e /k  -3 (as quoted by YC), 
but the deviation now is in the opposite direction. 

The elimination of the thermal smearing in our model 
hardly changes the bond density. Structure factors 
calculated with B = 0 in (2) yield a static deformation 
density with a bond peak of the same height (0.22 e 
A -3) as in the dynamic deformation density. This 
general result was also obtained by YC, but with a 
different mathematical  procedure. 

We cannot confirm the error calculated by YC in the 
deformation density for data set 21, a = 0.007 e A -3, 
based on the a(Fo)'s. Instead we calculate a = 0.036 e 
,/~-3 which fits much better to the F o - F C map shown in 
Fig. 3 where the maximum-error level is 0.08 e A-3. For 
data set 17, however, we calculate a(Ap) = 0.009 e A -3 
which fits well to the maximum-error level of 0.02 e 
/k -3 of the F o -- Fc map shown in Fig. 2. 

If we wish to determine the (difference) density in the 
S i -S i  bond with an accuracy of ~ = 0.02 e A -3 and if 
we assume an average density of 20 e ,/~-3 in the Si 
core, we are faced with a ratio of ~/p = 10 -3. The four 
H K K K  reflections, with a(Fo)/F ~_ 10 -2, do not have 
the necessary accuracy. Hence, with silicon, inclusion 
of a few less accurately determined structure factors in 
the Fourier synthesis has a disastrous effect, and lowers 
considerably the standard which has been obtained 
with the remaining data. 

I thank Dr N. K. Hansen, Berlin, for sending a list of 
structure factors from which the figures in Table 2 for 
the HC model were calculated, and Dr A. Kutoglu, 
Marburg, for his help in using the Fourier program of 
Finger & Prince (1975). 
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